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Energy transport in a nonlinear and inhomogeneous 
random gravity wave field? 
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Certain tertiary resonant interactions of gravity waves which have been found 
previously can be obtained more easily by using a simple extension of Whitham’s 
formalism. The contribution of these interactions to the total energy transfer in 
an inhomogeneous random field of gravity waves is calculated. It is found to be 
small for open-ocean waves, but to be of some importance for shallow-water 
waves, where topography or mean shear currents may produce strong inhomo- 
geneities. The nonlinear splitting of the group velocity is found to be unimportant 
in wave fields with sufficiently smooth spectra. 

1. Introduction 
The generation, propagation and dissipation of surface waves in the ocean 

have been objects of intense study for a long time. From theoretical considera- 
tions it turned out that the evolution of wave fields is governed by an equation 
similar to Boltzmann’s transport equation in statistical mechanics: 

(Hasselmann 1968,1970). Here A(k, x,t) denotes the action density, equal to the 
spectral energy density divided by the intrinsic frequency, ri = aQ/ak, the group 

velocity, and k = - anlax, the rate of change of the wavenumber due to refrac- 
tion. The left-hand side of (1) describes, besides horizontal transport and 
refraction of energy, the interaction with inhomogeneous or time-varying mean 
currents and depths, studied originally by Longuet-Higgins & Stewart (1961, 
1962), who expressed the energy transfer in terms of the radiation stress 
associated with the waves. 

The source function X(k, x, t )  is the rate of change of action density and is due 
to several physical processes, e.g. wave generation caused by the mechanisms 
investigated by Miles (1957) and Phillips (1957), dissipation due to turbulent 
bottom friction (Hasselmann & Collins 1968) or white-capping (Longuet-Higgins 
& Turner 1974; Hasselmann 1973), and energy transfer due to resonant inter- 
actions (Phillips 1960; Hasselmann 1962). This last mechanism has been found 
to be of major importance during the stage of wave generation. 

7 Shortened version of the author’s Ph.D. thesis, hereafter cited as I. 
8 F L M  50 
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While the left-hand side of (1) is linear in A ,  the source function is not; for 
example, the resonant interactions produce a term cubic in A .  It is the purpose 
of this paper to look in detail a t  the approximations which lead to ( l ) ,  and to 
derive a more accurate version which contains nonlinear corrections on the left- 
hand side. It is found that certain tertiary interactions are of importance; these 
were discussed by Longuet-Higgins & Phillips (1  962) and are usually neglected 
since they do not contribute to the total energy transfer. However, this result 
is valid only for homogeneous wave fields, and in the following the effect of 
t,hese interactions on the propagation of an inhomogeneous wave field is 
considered. 

A powerful mathematical technique for such problems has been developed by 
Whitham (1965a, 1967). It had to be generalized slightly since in its original form 
it is suitable for dealing with single wave trains rather than a random wave field. 
The procedure outlined below is applicable to all those wave problems where the 
interactions are very weak, i.e. where resonant three-wave processes are pre- 
vented by the structure of the dispersion relation. It is therefore different from 
the method used by Simmons (1969) to calculate capillary-gravity wave 
interactions. 

In  addition, it is found that the nonlinear splitting of the group velocity 
mentioned by Whitham (1965b) does not occur in a random wave field with a 
sufficiently smooth spectrum. 

In  the following some of the nonlinear coefficients which are defined by 
cumbersome algebraic expressions are given explicitly in appendix B ; further 
details can be found in I. 

2. Analysis 
We start with a form of the equations of motion for surface waves which can 

be deduced using a variational principle (Luke 1967): 

with 

8 Laxat=o, s 
L =Sr;c(l[(””)2+(g)2] ---u.-+gx at ax ax. 

2 ax a@ 1 
Here @(x, x ,  t )  and <(x, t )  denote the velocity potential and surface elevation of 
the wave field, which is superimposed on a mean current of velocity U(x, t )  and 
elevation Z(x, t ) ;  h(x) is the bottom profile and x and x are the horizontal and 
vertical co-ordinates, respectively. Mean quantities, which are allowed to be 
slowly varying functions of x and t ,  describe the state of the fluid in the absence 
of the wave field. 

For the following perturbation expansion, whose details are given in I, we 
introduce two small parameters: c and 7, where e is a measure of nonlinearity, 
i.e. a typical wave steepness, and 97 is a measure of inhomogeneity or unsteadiness, 
i.e. the ratio of a typical wavelength or wave period to the scale of the mean 
motion. The wave field is then expanded in a way similar to that of Whitham 
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(1967), except that we do not restrict ourselves to a single wave train but con- 
sider a superposition of a great number, say N ,  of wave components: 

(3a) 

@(x,  x ,  t )  = b ( x ,  2 ,  t )  + C b,(x, 2, t )  exp (is,) + C b,,,(x, 2, t )  exp [i(sm + $,)I + W e 3 ) .  
( 3  b )  

So that 5 and CD are real, the sums in (3) are extended to negative indices with 
the conventions s-, = -s,, a-, = a:, etc. 

C(x, t )  = a@, t )  +C a,@, t )  exp (is,) + C amn(x,  t )  exp [i(s, +$,)I + O(e3), 
n m,n 

n m, n 

The frequencies and wavenumbers are related to the phases s,(x, t )  by 

w, = -as,/at, k, = as,/ax. (4) 

The linear amplitudes a, and b, are O ( e ) ;  the nonlinear amplitudes am, and b,, 
and the wave-induced changes a and b in the mean field are O(e2).  All these 
quantities are assumed to be slowly varying functions of x and t ,  i.e. 

(a/at, a/ax) = O ( V )  (wn, kn)* 

For N = 1, (3) and the following calculations of this section are similar to  those 
of Whitham (1967). 

The vertical structure of the coefficients b, b, and b,, can be obtained by 
inserting (3  b )  in the potential equation 

A@ = 0, ( 5 )  

which follows from ( 2 )  by considering the CD variation, This procedure is not 
quite straightforward since the variational principle (2) should make the use of 
the equations of motion unnecessary. The complication is due to the fact that 
the upper limit of the integral in ( 2 )  depends on the phases s,(x, t ) ;  a detailed 
discussion of this problem has been given by Bisshop & Wilson (1968). One 
obtains 

with A,  A,  and A,, still to be determined. The (arbitrary) factors cosh Ic, H and 
cosh I k, + kml H ,  where H ( x ,  t )  = h ( x )  + Z ( x ,  t )  is the mean water depth, are 
introduced for convenience. 

With (3b) ,  (4) and ( 6 )  the integration in (2) can be carried out analyticalIy and 
the Lagrangian can be expressed as 

L = L(a ,  B, 7, an, An, am,, Am,, s,, w,, kn),  (7 1 
where p = - aA/ax and y = aA/at. The explicit form of (7) is given in I. 

The averaged Lagrangian 
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is now calculated in a simple way. After Taylor expansion of L in powers of the 
perturbation parameter 6 ,  the phases appear in L only in expressions of the form 
exp [i(s, + s, + . ..)I. It is easily verified that 

exp(is,) = 0, exp (i[s,+s,]) = S,,,-,, ( 9 4  b )  

( 9 4  

x C'-:('jl6mn+Si,6~n+Si,s~,)I, ( 9 4  

exp (i[sl  + s, + s,]) = 0, 

exp (i[sj+sI+s,+sn]) = (sj,-ts,,-,+6j,-,s~,-m+6i,-m6t,_,) 

and one finally obtains the averaged Lagrangian? 

9 = (U.p-r)(H+a)- t&ga2+&HPZ 

+ 
- @,a: +A:a,) [w, - (U + P). k,] (1 +ak,tanh k, H ) )  

{A,A:[L, tanh k,H +ask:( 1 + tanh2 k,H)] +ga,a: 
n> 0 

+& x V,,+O(€~). (10) 
m,n>O 

The interaction term V,, = V(k,, k,, w,, w,, a,, a,, A,, A,, a,,, Amn) is given 
explicitly in I. 

It should be noted that the Lagrangian contains terms O(e4) whereas in (3) 
the O(e3) terms have already been neglected. It is easy to show, however, that 
these terms do not contribute to the averaged Lagrangian. 

The governing equations are now obtained by applying the modifiedvariational 
principle 

6 2 Z d x d t = O .  (11) s 
First we consider the variations with respect to a and A ,  the wave-induced 
changes in elevation and velocity potential : 

a a p  a a u  o, 
0, - - - - _. = a 9  

aa at a7 a i a p  
-=  

which lead to 

correct to second order. 
These equations describe the well-known influence of waves on the mean 

current and water level (Longuet-Higgins & Stewart 1961). They could be 
derived directly from conservation of mass and momentum as discussed by 
Whitham (1967) for N = 1. The quantities a and f3 can be determined from (13) 
if the linear approximation to the wave field is known. In  the following, for 
simplicity we redefine H and U to be the total mean depth and current, respec- 
tively. We must then remember, however, that the mean state cannot be regarded 
as independent of the wave field. 

t Up t o  terms which do not contribute to the following variations. 
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The equations for the variations with respect to  a,,, A,, and A, can be used 
to express these quantities in terms of the linear amplitudes a,: 

am, = W,, k,, w,, 0,) aman + O(e4), 

A,, = Q(kn, km, w n ,  w,)a,an + O(e4)* 

(14b)  
(14c) 

The a,  variation gives the dispersion law 

(w, - k,. U)2 = gk, tanh (k,H) 

x (1 + 4 X S(kn, k,, wn, w V L ) ~ ~ U ~ }  +O(e4)* (15) 
m>O 

The coeEcients P, Q and X are given in appendix B. 
The linear part of (15) is the well-known relation for small amplitude waves. 

The nonlinear part represents, besides the influence of changes in H and U, the 
frequency shift due to the finite amplitude of the wave components. This can be 
compared with a result of Longuet-Higgins & Phillips (1962), who calculated the 
change in phase velocity produced by tertiary nonlinear wave interactions. In  
fact, the two results turn out to be identical.? This is not surprising if one looks at  
(9  d ) ,  which states that only those quadruples of wave components for which the 
conditions sj + s, = 0 and s, + s, = 0 hold contribute to the averaged Lagrangian. 
Because of (4) this is equivalent to 

ki+k, = k,+k, = 0, 

w j + w ,  = w,+w, = 0, 

which from the viewpoint of weak interaction theory is a special case of the 
general resonance condition for a four-wave process : 

kj+kz+k,+k, = O,\ 

w j + w ~ + o , + w ,  = 0.l 

Longuet-Higgins & Phillips (1962) found that the interactions (16) change the 
phase velocity but do not transfer energy among different wave components. 
This result is valid if the wave field is strictly steady and homogeneous. In  the 
following it will be shown how these interactions contribute to the energy 
transport in an unsteady and/or inhomogeneous wave field. 

The last variational equation is given by the variation of (1  1) with respect to 
the phases s,, which occur in the averaged Lagrangian only through their 

derivatives k, and w, : a a z  a a 2  o. - = 
atao, ax'ak, 

This represents the conservation of action density, and by defining a transport 
velocity u, = - (a9/akn)/(a9/aw,) may be expressed as 

a a 2  a 
ataw, ax ( i:) +-. u,- = o .  _- 

f Apart from a slight misprint in the cited paper. 
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We find that 

I n  the linear approximation u, is identical with the group velocity while the 
action density is given by the ratio of the wave energy to the intrinsic frequency, 
a general result for linear waves (Bretherton 6t Garrett 1968). 

Equations (1 5 )  and (1 9) constitute a system of 2N partial differential equations 
for the a,(x, t )  and s,(x, t )  which in principle could be solved with given initial 
values. This would be practical, however, only for a very small number N of wave 
components. For oceanic conditions N must be taken as a large number; it is 
therefore reasonable to consider the limit N - t m  and to adopt a continuous 
representation of the wave field. This can be done in the usual way and leads to 
the radiation balance equation (Hasselmann 1968). It is first necessary, however, 
to look in more detail a t  the appropriate nonlinear group velocity. 

3. Nonlinear group velocity and radiation transfer equation 
It is convenient to rewrite (15) and (19) by introducing the dependent variables 

&(x, t )  = aL?/aw, and k,(x, t )  instead of a,(x, t )  and s,(x, t ) .  Using (4), we then 
have 

ar, a ak, awn 
-+--.u,I, = 0, -+- = 0, 
at ax at ax (21 a, b)  

where w, is obtained from (15) as 

W ,  = Q(k,; k,, ..., k,,,, a,, ...,a,; X, t ) .  (22) 

Since the amplitudes in (22) occur only a t  second order in c,  we may replace a, by 
In, using the linear part of ( 2 0 ~ ) .  

In  the limit of small amplitude, the system (21) is decoupled for different 
indices, and each pair of equations has one double characteristic velocity, which 
is equal t o  the corresponding linear group velocity aw,/ak,. 

Por finite amplitudes, however, (21) turns out to be hyperbolic and ingeneral 
has 2N different characteristic velocities, which are the correct generalizations 
of group velocity for nonlinear waves, as shown by Whitham (1965 b )  for iV = 1. 
Consequently, disturbances in wavenumber and amplitude will propagate a t  
different speeds. The quantity aw,/ak, must be defined carefully, since its value 
depends on which measure of amplitude is kept constant during the differentia- 
tion with respect to wavenumber. As pointed out by Lighthill (1965), aw,/ak, is 
always the energy propagation velocity if the amplitude measure diplw is kept 
constant. 

In contrast, in a random wave field consisting of many components with 
different wavelengths, the propagation of each component is again governed 
by only one velocity, provided that the energy spectrum is sufficiently smooth. 
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It is shown below that in this case the velocity aw,/ak, tends to a unique value, 
regardless of the amplitude measure which is kept constant. 

The dispersion relation (22) can be written more explicitly as 

wn = Q(')(kn)+C8(k,, 'm k,)a,uE, 

where Q(')(k,) = U . k + (gk tanh kH)+ ,  

(23) 

$(k,, k,) = 2(glctanhkH):S(k,, k,, Q(O)(k,), Q(O)(k,)). 

Let d,, = a,a~/$(km) be an amplitude measure for the mth component, $(k) 
being an arbitrary positive function. The gradient of frequency with respect to 
wavenumber, keeping d, constant, is calculated from (23) : 

Since 

it follows that 

Equation ( 2 5 )  shows explicitly the dependence of aw,/ak, on the choice of $(k), 
at O(e3). 

We assume now that the number of wave components is large, each contri- 
buting onIy a small fraction to the sum in (25), which is to say that the spectrum 
must not be sharply peaked a t  some dominant wavenumber. The sum can then 
be replaced by an integral with a finite value, whereas the last term in (25) tends 
to zero, regardless of the form of $(k). Physically, neglect of this term corre- 
sponds to the neglect of self-interactions compared with interactions among 
different wave components. Therefore, in the continuous limit, which seems to 
be a reasonable approximation for oceanic surface waves, the velocity aw,/ak, 
is defined uniquely even for finite amplitudes, and as one can show by similar 
considerations, its value coincides with the transport velocity u, defined in (19). 

Now there are no difficulties in writing (19) in a continuous form. The wave- 
number spectrum E(k, X, t )  is defined in the usual way as the Fourier transform 
of the autocorrelation of the vertical elevation <(x, t )  and is the power spectrum 
in the statistical sense rather than the spectrum of physical energy. 

From ( 3  a)  and the assumption that the initial values of the phases are inde- 
pendent and equally distributed over ( 0 , 2 7 ~ )  we obtain the relation between 
E(k, x, t )  and the amplitudes a,: 

E ( k , x , t ) d k  z Cdk{2a,a:+4 C ( P ~ , ~ - ~ ~ + P ~ ~ , , - , ) a , a E a , u ~ } ,  (26) 
n m>O 

with the coefficients P,, from (14 b ) .  The superscript dk on the first summatioil 
sign indicates that the sum is taken only over values of n for which k,(x, t) lies 
in the range dk around the fixed wavenumber k. The nonlinear term in (26) 
represents the distortion of the wave form due to sum and difference wave- 
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numbers; it corresponds to higher harmonics in a Stokes wave. For one- 
dimensional frequency spectra this term has been calculated by Tick (1 961). 

Details of the limiting process N+co can be found in appendix A; a more 
elegant proof, valid for linear wave fields, is given by 

We end up with the radiation transfer equation 

(gk tanh kH)& 

Dewar (1970). 

= 0, (27) 

where 

the frequency R is given by (15)) which in continuous form reads 

Q(k,x,t)  = k.U+(gktanhkH)g 1 +  X ( k , k ) E ( k ) d k ‘  i s  
The function J(k, x, t )  summarizes the nonlinear contributions in (20a)  and (26); 
i t  has the form 

T(k, k’) -P2( T k‘, k ?  k’) E(k’ k ) ]  dk’, (29) 
E ( k )  

where the sum over both signs is to be taken. The linear part of (27), 

was given in this form by Hasselmann (1970). It describes the propagation and 
refraction of small amplitude wave fields on varying currents and d e p t h  and 
includes the energy transfer between waves and the mean current via the 
radiation-stress mechanism (Longuet-Higgins & Stewart 196 1 ,  1962 ; Bretherton 
& Garrett 1968). 

The nonlinear terms in (27) have the following effects. 
(a)  Owing to the change in R and therefore aQ/ak, the waves propagate with 

a different velocity which depends on the total wave height spectrum. I n  parti- 
cular, the direction of aqak is generally different from the wavenumber direction 
even if there is no mean current. It should be noted that the change in group 
velocity is different in both magnitude and direction from Stokes’ mass transport 
velocity. 

( b )  The refraction term, proportional to anlax, may be non-vanishing even if 
the mean current and depth are horizontally homogeneous; e.g. in a fetch area 
where aE/ax + 0, according to (28) we also have aQ/ax $. 0. This can be inter- 
preted as follows: at second order the properties of the waveguide depend on the 
wave field and therefore an inhomogeneous wave field causes refraction even if 
the mean state is homogeneous. 

(c) The change in action density expressed by the function J(k, X, t )  in (29) 
leads to an additional ‘energy’? flow between the waves and the mean field, thus 
representing a higher-order correction to the radiation-stress effects. 

t ‘Energy’ in the previous sense. 
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4. Quantitative results 
To estimate quantitatively the influence of the nonlinear corrections to (27) on 

wave propagation, they must be compared either with their linear values, or if 
possible, with other contributions to the energy balance (1). We consider first 
the energy transfer due to resonant interactions of the general form (1 7), which 
have been found to be responsible for the major part of the total energy transfer 
during wave generation (Hasselmann et al. 1973). I ts  contribution to the source 
function is of the form 

Sr.i' = d k ' d k  . . . E(k) E ( k )  E(k"), (31) s 
where the dots stand for a kernel function which does not concern us here. The 
main feature of (31) is that it contains a triple product of energy spectra; in terms 
of our perturbation parameter e, the integral is O(e6).  

The nonlinear terms in (27) contain products of two spectra. Furthermore, 
they contain space or time derivatives which are assumed to be small; their order 
of magnitude is given by O(r/c4). The relevant ratio is therefore T I C 2 .  Taking e to 
be a typical wave steepness and putting e z 0.1, we conclude that the additional 
energy flow given by (27) is of the same order as the resonant energy transfer if 
r/ z i.e. if the scale of inhomogeneity is about 100 typical wavelengths or 
wave periods. This order-of-magnitude calculation is very crude; nevertheless it 
should provide a first rough estimate of whether or not the nonlinear terms in 
(27)  can influence the evolution of the wave field in a concrete situation. 

The changes in frequency, according to (28), and thus the change in group 
velocity, as well as the function J from (29), have been computed numerically 
for two cases. 

(a )  Fully developed wind waves in oceanic conditions, which can be described 
by a Pierson-Moskowitz (1964) spectrum. 

( b )  Waves in shallow water (depth M 7m) with a strong onshore wind 
( N gbft), measured by Schrader (1968) in the Elbe estuary. 

I n  both cases the details of the directional distribution turned out to be of 
minor importance, and a cos4-law was assumed. 

In  figures 1 and 2 the relative change in group velocity is shown. I n  the oceanic 
case, it increases monotonically with wavenumber, which means that it is mainly 
short waves that feel the change in propagation properties due to finite amplitude. 
The direction of the group-velocity change (not shown) is essentially the mean 
wind direction (maximum deviation about 20"). This means that the inter- 
actions (16) tend to sharpen the directional distribution. Since the magnitude 
does not exceed a few per cent, however, it is not likely that this effect could be 
observed. 

In  case ( b ) ,  for high wavenumbers the curves behave similarly, whereas in the 
range near the spectral maximum, where the waves are essentially in shallow 
water, the behaviour is different. The relative magnitude is considerably larger 
than in deep water, e.g. for waves with wavelength one-third of those of the waves 
with maximum energy the change in group velocity is more than 10 yo. 
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FIGURE 1. Relative change in group velocity according to (28) for three wavenumber 
directions relative to mean wind direction for an oceanic wave field. -, cos4 directional 
distribution ; ----, directional distribution 

...... , scalar Pierson-Moskowitz spectrum. The curves do not depend on the value k,, of the 
maximum-energy wavenumber. 

I I I 1 I I I I I 

FIGURE 2 .  Relative change in group velocity for shallow-water waves. . . . * * .  , scalar spectrum 
constructed from the frequency spectrum measured by Schrader (1968). ---, kH = 1.  
The maximum energy wavenumber k, corresponds to  a wavelength w 60 m. 
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FIGURE 3. Relative change in effective action density according to (29) for 
oceanic waves. 
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FIGURE 4. Contributions to the integral in (29). --, fist summand; ---, second sum- 
mand. (a) Oceanic waves; the difference between these curves is shown in figure 3. 
( 6 )  Shallow-water waves. 
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The relative change in action density as defined by (29) is shown in figure 3 for 
the oceanic case. I n  the interesting range it is smaller than a few per cent and 
clearly negligible. It is nevertheless interesting to look more carefully a t  (29). 
The integrand is a sum of two terms: the first expresses the fact that the con- 
served action density is no longer proportional to the square of the amplitude, 
while the second gives the change in the spectrum due to higher harmonics as 
discussed above. In  spite of their quite different algebraic structures, these terms 
tend to cancel each other, as seen from figure 4 (a) .  

In  case (b ) ,  the magnitude of each term is even higher than in deep water, up 
t o  50 % of the linear value. Again they have different signs and nearly the same 
magnitude (figure 4 (b ) ) .  The difference is not shown here, since it is quite sensitive 
to the accuracy of the numerical evaluation of the integrals; it is also not clear 
how strongly it depends on the details of the energy spectrum. However, it may 
be of considerable magnitude and should be calculated carefully in a concrete 
shallow-water situation. 

We may conclude therefore that the nonlinear corrections to the energy 
transport equation (27) can be neglected for oceanic waves, whereas they should 
be taken into account for shallow-water waves. However, as long as the important 
dissipation mechanisms are not quantitatively understood, it is not clear how 
strongly these nonlinearities influence the actual behaviour of shallow-water 
waves. 

I thank Professor Klaus Hasselmann for helpful discussions. 

Appendix A. Derivation of the transport equation (27) 
We start from (21) and introduce the spectrum of action density in the form 

A(k, x, t )  dk z CdkIn(x, t ) ,  (A 1) 

where the summation is performed as in (26). Instead of the index n, we may 
use, for example, the initial values pn = k,(x, 0) of the wavenumbers to identify 
the different wave components: 

( A %  (A31 
Without loss of generality, we may assume the p n  to be independent of x. 
Equation (A 1) is equivalent to 

where dp is a volume element in p space corresponding to dk in k space, and 
D(p,, x, t )  = ak,/ap, is the Jacobian of (A 3). 

n 

In = 4 P n ,  x, 4, k, = WP,, x, t ) .  

A(k,, x, t )  dk = on, x, t )  mp,, x, t )  dP = 4 P n ,  x, t )  dP, (A 4) 

Equation ( 2  1 u) therefore leads to 

Now from (21 b)  and (4) it may easily be shown that the time evolution of the 
Jacobian is governed by 
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and since we have argued that the transport velocity u, can be identified with 
aw,/ak,, it follows that 

= 0. (A 7) 
aA (kn, x, t )  aw, aA (k,, X, t )  +-. at ak, 2x 

The x and t derivatives in (A 7)  are taken with a fixed value of n, i.e. p,. Intro- 
ducing now derivatives for fixed k,(x,t), denoted by a subscript k,, (A7) can 
be expanded to give 

From (21 b )  we have 

and dropping the indices, we finally obtain 

A and Q being functions of (k, x, t). 
Furthermore, from (20a), (26) and (29) we conclude that 

A(k,x,t) = - (gk E(k7 tanh x’ kH) t  t, (1  +J(k ,  x, t))  + O(e6), (A 11)  

thus completing the proof of (27). 

Appendix B. Explicit expressions for the nonlinear coefficients 
Let us introduce the following definitions: 

r ( k )  = tanhkH, 7‘ = ~(k’), a = (gkr)*, a’ = (gk’r’)&, 

A(k,k)  = (a+a’)2-gglk+kI tanh Ik+k’(H, 

D ( k , k )  = -[a2+af2+aaf(1--)]  1 k . k  
2 klC1rr’ ’ 

Q(k ,k )  = {gE-(a+a‘)D}/A. 

The coefficients P(k,  k’), S(k, k’) and T(k ,  k’) appearing in (28) and (29) are then 
given as follows : 

P(k,k’) = {(a+a’)E-  (k+k’I tanh(Ik+k’lH)D}/A, 

Here D* = D(k, t- k ) ,  etc., and summation over both signs is understood. 
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